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abstract: During mammalian pregnancy, it has been demonstrated that the quality of embryo implantation determines the quality of
ongoing pregnancy and fetal development. Recent studies have provided increasing evidence that differential Wnt signaling plays diverse roles
in multiple peri-implantation events. This review focuses on recent progress on various aspects of Wnt signaling in preimplantation embryo
development, blastocyst activation for implantation and uterine decidualization. Future studies with conditional deletion of Wnt family
members are hoped to provide deeper insight on the pathophysiological significance of Wnt proteins on early pregnancy events.
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Introduction
Successful implantation requires the embryo’s development into an
implantation-competent blastocyst and the synchronized transform-
ation of uteri into a receptive stage. Although there have been numer-
ous signaling factors and pathways found to be important for this
process (Dey et al., 2004; Wang et al., 2006), the molecular basis of
reciprocal interactions between the blastocyst and the uterus during
implantation still remains largely unknown. Recent progress exploiting
global genomic microarray screening and increasing number of trans-
genic mouse models has promised new hopes and strategies to
unravel the embryo–uterine dialog during implantation. Among a
range of identified signaling pathways, Wnt signaling has recently
drawn increasing attention and interest in the peri-implantation event.

Wnt proteins constitute a large family of cysteine-rich secreted
molecules that regulate cell–cell interactions during embryogenesis
and development in nematodes to mammals (Cadigan et al., 1998;
Huelsken and Birchmeier, 2001; Van and Berns, 2006). To date, at
least 19 Wnt genes have been identified in mouse and other
vertebrates with 7 in invertebrates. When Wnt proteins bind to two
receptors, Frizzled (Fzd, currently 10 members) proteins and lipoprotein
receptor-related proteins 5 and 6 (LRP5/6), classic canonical Wnt signal-
ing is activated (Bhanot et al., 1996; Pinson et al., 2000; Tamai et al., 2000;
Wehrli et al., 2000; Mao et al., 2001). As a result, b-catenin, which is
encoded by Ctnnb1 gene is stabilized and accumulates in the cytoplasm,
which then translocates into the nucleus and interacts with T-cell/

lymphoid enhancer-binding (Tcf/Lef) transcription factors to influence
transcription of target genes (Gordon and Nusse, 2006; Willert et al.,
2006). Also, Wnt proteins can signal through b-catenin-independent
(non-canonical) pathways solely via Fzd receptors, regulating Ca2þ/
planar cell polarity and Rho signaling (Veeman et al., 2003; Barrow,
2006). Genetic and biochemical evidence has demonstrated that Wnt
activity can be regulated by two main classes of antagonists. The first
group consists of Wnt ligand-binding proteins, the secreted Fzd-related
proteins (sFRPs), which are structurally similar to the extracellular
domains of the Fzd family, which exert their functions by preventing extra-
cellular Wnt ligands from interacting with Fzd receptors (Rattner et al.,
1997; Xu et al., 1998). Alternatively, the second class of antagonists,
the Dickkopf (DKK) family proteins, do not prevent Wnt from associating
with Fzd receptors but directly interact with LRP5/6 co-receptors to form
a ternary structure, resulting in a rapid removal of the cell surface LRP
receptors via Kremen-mediated endocytosis (Glinka et al., 1998; Fedi
et al., 1999; Krupnik et al., 1999; Bafico et al., 2001; Mao et al., 2001;
Semenov et al., 2001). The activation of each of these signaling pathways
depends on specific binding of Wnt ligands, receptors, extracellular antag-
onists and intracellular signaling components, thus determining whether
the signaling cascade is driven by canonical or non-canonical pathways.

Previous studies have revealed that Wnt proteins play important
roles in various developmental and pathophysiological processes,
including embryogenesis and organogenesis, tumorigenesis and homeo-
stasis. Since an intricate interplay between the embryo and the uterus
during implantation shares similar features of reciprocal cell–cell
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communications as that during organogenesis, signaling pathways driven
by Wnt proteins are likely to participate in this process. In fact, emer-
ging evidence supports the concept that Wnts are important players in
multiple peri-implantation events. We herein briefly summarize recent
progress on the pathophysiological significance of differential Wnt path-
ways during preimplantation embryo development, blastocyst implan-
tation and post-implantation uterine decidualization.

Wnt signaling in preimplantation
embryo development
Preimplantation embryo development consists of successive cleavage
of fertilized zygotes leading to the formation of morulae which
undergo compaction before differentiation to blastocysts with acti-
vation. Recent reports demonstrated that many Wnt ligands, recep-
tors and related regulators are extensively expressed through mouse
preimplantation embryo development (Lloyd et al., 2003; Mohamed
et al., 2004; Wang et al., 2004a; Kemp et al., 2005). There was also
evidence that total and dephosphorylated (active) b-catenin are
expressed in early embryos spanning fertilized 1-cell embryos to blas-
tocysts, with total b-catenin primarily localized at the membrane and
cytoplasm whereas the active b-catenin localized at the nuclei of
embryonic cells. However, b-catenin null mutation studies revealed
that lack of zygotic b-catenin does not significantly impair the for-
mation of blastocysts (Haegel et al., 1995; Huelsken and Birchmeier,
2001). However, these mouse models failed to preclude the contri-
bution of residual maternal b-catenin during preimplantation embryo
development (Haegel et al., 1995). Investigation employing conditional
elimination of b-catenin in oocytes demonstrated that the zygotes,
even with depletion of both maternal and zygotic b-catenin form blas-
tocysts in culture, acknowledging that b-catenin does not play a critical
role during preimplantation embryo development (De et al., 2004). In
this respect, our recent study using the strategy of adenoviral vector
(ADV)-mediated DKK1 overexpression for conditional inactivation
of nuclear b-catenin signaling or employing small molecular inhibitors
of nuclear TCF/b-catenin complexes, demonstrated that silencing of
Wnt/b-catenin signaling does not adversely affect the development
of preimplantation embryos, further confirming that canonical
Wnt-b-catenin pathway is unlikely to be required for preimplantation
embryo development (Xie et al., 2008). In fact, the diverse expression
of Wnt family components during preimplantation embryos (Harwood
et al., 2008) implies that there are alternative b-catenin-independent
Wnt signaling pathways during early embryo development. It is concei-
vable that differential Wnt proteins may function through MAPK and/
or Ca2þ pathways, and these pathways are known to be essential for
normal preimplantation embryo development (Pey et al., 1998; Wang
et al., 2004b; Xie et al., 2005). This concept is further supported by
recent observations on dishevelled (Dvl) family proteins, important
intermediate transducers of divergent Wnt pathways (Capelluto et al.,
2002; Itoh et al., 2005), showing their potential roles in regulating
cell–cell adhesion during preimplantation embryo development (Na
et al., 2007). Nonetheless, although canonical Wnt activities seem to
be dispensable for the preimplantation development of zygotes to blas-
tocysts, definitive roles of differential Wnt pathways during early embryo
development remain elusive and future studies are warranted.

Wnt signaling during blastocyst
activation, a step towards
blastocyst competency for
implantation
The blastocyst’s state of activity is equally important to the achieve-
ment of uterine receptivity in defining the window of implantation
(Paria et al., 1993; Wang and Dey, 2006). Although a wide range of
signaling molecules has been identified to be critical in specifying
uterine receptivity for implantation (Wang and Dey, 2006), there is
limited information regarding the signaling network that governs blas-
tocyst activation (Paria et al., 1998; Wang et al., 2003; Hamatani et al.,
2004). Expression studies have provided substantial evidence that
some Wnt ligands may play a role during morula-blastocyst transition
and blastocyst activation toward implantation (Mohamed et al., 2004).
In this respect, recent findings using conditional elimination of
b-catenin in oocytes indicated that Wnt/b-catenin signaling, although
is not required for blastocyst formation, but is essential for normal
blastocyst function during implantation (De et al., 2004). For
example, female mice with conditional deletion of b-catenin in
oocytes produce reduced number of pups when crossbred with wild-
type males in comparison with those of wild-type to wild-type mating;
whereas this reduction in pup numbers is rescued in females with con-
ditional deletion of both b-catenin and E-cadherin in oocytes (De
et al., 2004). Considering diverse roles of b-catenin in cellular func-
tions, including its association with E-cadherin in adherens junctional
complexes and functioning as an intermediate in canonical Wnt path-
ways, this study suspected that paternal derived b-catenin in blasto-
cysts with maternal b-catenin depletion is primarily incorporated
into adherens junctions, causing insufficiency for nuclear Wnt signaling
and thereby leading to loss of blastocysts during the periimplantation
period. In contrast, simultaneous depletion of b-catenin and E-
cadherin restores nuclear b-catenin signaling in blastocysts, because
in the presence of less E-cadherin, more b-catenin is available for
nuclear Wnt signaling (De et al., 2004). Moreover, our recent investi-
gation, using the strategy of DKK1-mediated functional inhibition of
nuclear b-catenin signaling and small molecule inhibitors of Wnt signal-
ing, demonstrated silencing canonical Wnt/b-catenin signaling does
not adversely affect the uterine preparation for receptivity, but
remarkably blocks blastocyst competency to implant. Employing the
physiologically relevant delayed implantation model and trophoblast
stem cells in culture, we further observed that a coordinated activation
of canonical Wnt-b-catenin signaling with attenuation of the non-
canonical Wnt-RhoA signaling pathway ensures blastocyst compe-
tency to implantation (Xie et al., 2008). These findings constitute
direct evidence that Wnt signaling is at least one pathway determining
blastocyst competency for implantation. However, it remains elusive
regarding a definitive molecular hierarchy of Wnts among other
signaling molecules in ensuring blastocyst activation for implantation.
Early studies in mice have demonstrated that catecholestrogens
formed locally in the uterus from the primary estrogen participate
in blastocyst activation during the peri-implantation period (Paria
et al., 1998). Since catecholestrogens can induce canonical Wnt acti-
vation in the uterus (Hou et al., 2004; Ray et al., 2008), it would be
interesting to study potential interactions between catecholestrogen
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and Wnt signaling in blastocysts during implantation to further reveal
underlying molecular mechanisms governing blastocyst activation.

Embryo-induced uterine
Wnt/b-catenin signaling
toward implantation
It is generally accepted that the embryo plays an active role in regulat-
ing uterine preparation toward implantation via its secreted paracrine
and juxtacrine factors (Paria et al., 2001). For example, implanting blas-
tocysts exhibit up-regulated expression of heparin-binding epidermal
growth factor-like growth factor (HB-EGF), which via an auto-
induction loop induces its own gene expression in the uterine epi-
thelium solely at the site of blastocyst apposition (Hamatani et al.,
2004). With respect to Wnt-mediated embryo–uterine cross-talk
during implantation, a recent study using a TCF/Lef-LacZ reporter
mouse, which faithfully monitors activation of Wnt/b-catenin
pathway, demonstrated that the uterine Wnt/b-catenin signaling is
transiently and strictly induced at the prospective site of embryo
attachment immediately before implantation (Mohamed et al.,
2005). This timely Wnt activation requires the presence of active blas-
tocysts as well as the preimplantation estrogen secretion (Mohamed
et al., 2005). Furthermore, an intraluminal delivery of Wnt7a
protein, a Wnt ligand expressed by the active blastocysts (Mohamed
et al., 2004, 2005) can induce uterine Wnt/b-catenin activation,
equivalent to that by the living blastocyst; whereas intrauterine
co-administration of canonical Wnt signaling inhibitor sFRP-2 inhibits
uterine Wnt/b-catenin activation and impairs implantation. These
results support the notion that Wnt/b-catenin signaling pathway
plays a critical role in coordinating embryo–uterus preparation
toward successful implantation. In addition, it has been reported
that Wnt7a is transiently expressed in the ovine uterine luminal epi-
thelium during the peri-implantation period, and can induce differential
Wnt activities in trophoblast cells (Hayashi et al., 2007), suggesting
Wnt signaling also plays an important role during embryo–uterine
interactions during early pregnancy in sheep (Kim et al., 2003;
Hayashi et al., 2007). However, it remains to be explored whether
uterine activation of Wnt pathways is seeded by embryonic Wnt
ligands or other signaling molecules. Recent in vitro fertilization–
embryo transfer studies in women have observed that the implan-
tation of every embryo facilitates the chances of the remaining
embryos implanting in the uterus, implying that implanting embryos
are actively involved in the process of implantation and fine tuning
the endometrium to become more receptive for the implanting
embryo (Matorras et al., 2005; Pietras et al., 2005). Thus, it will be
interesting to investigate further the significance of Wnt signaling in
embryo–uterine cross-talk in model systems closer to humans.

Wnt signaling in regulating
embryo spacing?
In polyovulatory species, embryos tend to be equally spaced with each
other along the uterine horn before the initiation of implantation. This
well-organized embryo apposition process helps prevent embryo
overcrowding and preclude the possibility of consequent loss of

embryos (Wimsatt, 1975). Although the phenomenon of embryo
spacing has been noticed for more than 100 years, there is still very
limited information available regarding its underlying cellular and mol-
ecular basis. It was generally thought that proper timely regulated
uterine muscular contraction account for normal embryo spacing,
which has been suggested to linked with prostaglandin signaling
(Wellstead et al., 1989). Recent studies using null mutation mouse
models further revealed potential roles of lysophosphatidic acid
(LPA) receptor (LPA3), cytosolic phospholipase A2a (cPLA2a) and
respective lipid mediators in embryo spacing (Song et al., 2002; Ye
et al., 2005; Hama et al., 2007). However, it is not known yet how
this uterine epithelium-derived LPA3/cPLA2a signaling would influ-
ence the function of heterogeneous uterine cells, including the muscu-
lar cells for proper embryo apposition. Previous observations of failure
to restore normal embryo spacing in mice missing LPA3 or cPLA2a by
prostaglandins implicated that there are alternative signaling molecules
involved in the regulation of proper embryo spacing. In this regard,
recent studies demonstrated that Wnt/b-catenin signaling is transi-
ently activated in circular smooth muscle of early Day 4 pregnant
uterus, forming evenly spaced bands along the uterine horn from
the oviduct end toward the cervix end (Mohamed et al., 2005),
raising the possibility that Wnt/b-catenin signaling may play a role
ensuring normal embryo spacing in the uterus. This unique pattern
of uterine Wnt/b-catenin activation requires the advent of embryos
and disappears in the muscular layer prior to the onset of blastocyst
attachment. A possible explanation would be that the blastocyst
emits a signal(s) that directly or indirectly activates the Wnt/
b-catenin signaling pathway in circular smooth muscular cells, thus
to regulate normal uterine contraction. Indeed, there have been
reports demonstrating the cross-talk between Wnt and prostaglandin
signaling in other systems (Wang et al., 2004c), suggesting that these
signaling pathways might coordinately regulate the process of
embryo spacing before the initiation of attachment reaction.
However, although there is evidence showing Wnt/b-catenin
pathway actions on muscular cells, none of them mention its roles
in modulating muscular contractility. The notion of Wnt proteins reg-
ulating embryo spacing still awaits further proof in a more physiological
environment.

Wnt signaling in uterine
decidualization
Recent studies have found that many Wnt ligands and Wnt
signaling-related genes are dynamically expressed in the uterine
stroma during the process of uterine decidualization (Paria et al.,
2001; Daikoku et al., 2004; Hayashi et al., 2007; Peng et al., 2008;
Zhang et al., 2008). For example, in pregnant mouse uterus, Wnt4
expression is first undetectable in the uterus on the morning of Day
4, but increased in the stroma surrounding the embryo with the
onset of attachment reaction at midnight of Day 4, and further
enhanced on Day 5 and beyond. By Day 7, Wnt4 is strongly expressed
throughout the whole deciduas (Paria et al., 2001). This spatiotem-
poral expression of Wnt4 implicates that Wnt4-driven signaling
plays an important role during implantation and decidualization. Inter-
estingly, this highlighted expression of Wnt4 coincides with the
expression of bone morphogenetic protein 2 (BMP2) (Paria et al.,
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2001), which has been shown to be a critical factor for normal uterine
decidual response in mice (Lee et al., 2007). In fact, recent evidence
suggests that Wnt4 may function in downstream signaling of BMP2
during progesterone-induced stromal decidualization in both cultured
mice and human endometrial stromal cells (Li et al., 2007). Most
recent observations that mice with conditional deletion of b-catenin
or constitutive overexpression of dominant stabilizing b-catenin in
mouse uteri exhibit decidualization defects (Jeong et al., 2009)
further support the concept that normal Wnt activities are critical
for decidualization success. Besides the findings in mice, there is also
evidence that progesterone can regulate Wnt signaling in the rat and
ovine uterine stroma by selectively up- or down-regulating specific
Wnt signaling components (Rider et al., 2006; Satterfield et al.,
2008), In addition, several Wnt family members and their inhibitors
are uniquely expressed in human endometrium during the menstrual

cycle (Tulac et al., 2003, 2006). However, there are also reports
showing that trophoblasts can emit paracrine factors down-regulating
endometrial Wnt activities during decidualization (Hess et al., 2007).
Nonetheless, a precisely regulated Wnt signaling is essential for
normal uterine decidualization.

Conclusion
Despite recent progress in elucidating Wnt proteins’ roles in peri-
implantation events (Fig. 1), the hierarchal relationship between
Wnt signaling and other implantation-related molecules, especially in
the context of in vivo animal models is intriguing and warrants
further investigation. Only limited number of Wnt family knockout
mice studies have revealed reproductive-related phenotypes so far
(Table I), which is probably due to the fact that genome-wide deletion

Figure 1 Wnt signaling in peri-implantation events.
(A) Peri-implantation embryo development from zygote to blastocyst involves extensive expression of many Wnt ligands, receptors and related reg-
ulators. However, an exact role of Wnt signaling during these processes still waits future identification. (B) Blastocyst activation is a crucial step syn-
chronizing the transformation of uterine receptivity for normal embryo implantation. Wnt signaling has been demonstrated as a necessary pathway that
ensures this process determining blastocyst competence for implantation. (C) Wnt/b-catenin signaling is required for normal embryo–uterine inter-
action to initiate embryo implantation. Wnt signaling is also actively involved in the process of post-implantation decidualization. The possible relation-
ship between Wnt signaling and embryo spacing is intriguing and warrants future investigation. DKK, Dickkopf family proteins (Wnt antagonists); sFRP,
secreted Fzd-related protein (Wnt ligand-binding protein).
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of many Wnt family-related genes result in embryonic lethality (Aoki
et al., 2008 and see Wnt home page: http://www.stanford.edu/
~rnusse/wntwindow.html), hampering studies on Wnt functions
during embryo implantation and uterine decidualization. The wide
use of Cre-Loxp transgenic mouse models will be a feasible strategy
to further explore the roles of Wnt genes during implantation. For
example, many previous inaccessible developmental genes such as
India hedgehog (IHH) and BMP2 have recently been proved to be criti-
cal for normal implantation (Lee et al., 2006, 2007). Future studies
using conditional deletion of Wnt family members will provide valuable
information toward more comprehensive understanding of Wnt sig-
naling in peri-implantation events.
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